Publication

  1. NeurIPSAI Core
    Are Self-Attentions Effective for Time Series Forecasting?
    Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim
    In Thirty-eighth Conference on Neural Information Processing Systems, 2024
  2. AAAIAI Core
    Fair Sampling in Diffusion Models through Switching Mechanism
    Yujin Choi, Jinseong Park, Hoki Kim, Jaewook Lee, and Saerom Park
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2024
  3. Evaluating practical adversarial robustness of fault diagnosis systems via spectrogram-aware ensemble method
    Hoki Kim, Sangho Lee, Jaewook Lee, Woojin Lee, and Youngdoo Son
    Engineering Applications of Artificial Intelligence, 2024
  1. NeurIPSAI Core
    Fantastic Robustness Measures: The Secrets of Robust Generalization
    Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee
    In Thirty-seventh Conference on Neural Information Processing Systems, 2023
  2. NeuNetAI Core
    Bridged Adversarial Training
    Hoki Kim, Woojin Lee, Sungyoon Lee, and Jaewook Lee
    Neural Networks, 2023
  3. Generating Transferable Adversarial Examples for Speech Classification
    Hoki Kim, Jinseong Park, and Jaewook Lee
    Pattern Recognition, 2023
  4. Fast Sharpness-Aware Training for Periodic Time Series Classification and Forecasting
    Jinseong Park, Hoki Kim, Yujin Choi, Woojin Lee, and Jaewook Lee
    Applied Soft Computing, 2023
  5. Exploring Diverse Feature Extractions for Adversarial Audio Detection
    Yujin Choi, Jinseong Park, Jaewook Lee, and Hoki Kim
    IEEE Access, 2023
  6. arXivAI Core
    Stability Analysis of Sharpness-Aware Minimization
    Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee
    arXiv preprint arXiv:2301.06308, 2023
  7. arXivAI Core
    Exploring the Effect of Multi-step Ascent in Sharpness-Aware Minimization
    Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee
    arXiv preprint arXiv:2302.10181, 2023
  8. ICMLAI Core
    Differentially Private Sharpness-Aware Training
    Jinseong Park, Hoki Kim, Yujin Choi, Woojin Lee, and Jaewook Lee
    International Conference on Machine Learning, 2023
  1. TPAMIAI Core
    Graddiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization
    Sungyoon Lee, Hoki Kim, and Jaewook Lee
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022
  2. Variational Cycle-consistent Imputation Adversarial Networks for General Missing Patterns
    Woojin Lee, Sungyoon Lee, Junyoung Byun, Hoki Kim, and Jaewook Lee
    Pattern Recognition, 2022
  1. Compact Class-conditional Domain Invariant Learning for Multi-class Domain Adaptation
    Woojin Lee, Hoki Kim, and Jaewook Lee
    Pattern Recognition, 2021
  2. AAAIAI Core
    Understanding Catastrophic Overfitting in Single-step Adversarial Training
    Hoki Kim, Woojin Lee, and Jaewook Lee
    In Proceedings of the AAAI Conference on Artificial Intelligence, 2021
  1. arXivAI Core
    Torchattacks: A PyTorch Repository for Adversarial Attacks
    Hoki Kim
    arXiv preprint arXiv:2010.01950, 2020